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PHENOMENOLOGICAL DESCRIPTION OF THE DISLOCATION MECHANISM 

OF FORMATION OF NUCLEATED DEFECTS IN PLASTIC DEFORMATION 

A. A. Movchan UDC 539.4 

The phenomenological approach to the problem of describing the process of fracture con- 
sists of introducing damage parameters and kinetic equations [i] or functionals [2] which 
give their change during loading. This approach was first used in [3, 4] to study damage 
accumulation during plastic deformation. The system of phenomenological description may 
not correspond to the micromechanism of the processes taking place, but the presence of a 
physical interpretation makes such a description more reliable. Here we attempt to construct 
a phenomenological model of damage accumulation with the well-known dislocation mechanism 
of growth of nucleated defects. 

In accordance with [5], dislocations moving during deformation encounter such obstacles 
as grain boundaries, subgrains, cells, particles of a secondary phase, etc., and accumulate 
at these sites, forming small regions with a high density of one type of dislocation. When 
the number of dislocations in the pileup exceeds a certain critical value, they combine: 
the pileup disappears and a nucleated defect takes its place. Thus, the process by which 
dislocations participate in the formation of defects can be tentatively subdivided into two 
stages: accumulation of dislocations at barriers; combination (disappearance) of the dis- 
locations with the formation of a nucleated defect. 

For the mechanism of defect formation proposed in [6] - connected with slip lines over- 
coming grain boundaries - the first stage is the accumulation of dislocations on correspond- 
ing boundaries characterized by a difference in the Burgers vector. The second stage is 
the formation of the defect (with the disappearance of the Burgers vector difference). For 
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the rotational mechanism of defect formation [7] involving uniaxial particulate disclination 
dipoles based on superdislocations, the first stage consists of rotation of the dipole through 
an angle (or, equivalently, establishment of the Burgers vector of the superdislocation); 
the dipole and superdislocation disappear in the second stage and are replaced by the new 
defect. 

i. A set of dislocations passing a given point of a continuum per unit of time can 
be characterized by the dislocation flux tensor Jij [8], where 6uij = -Jij6t. Here, t is 

�9 t 

time; uij, plastic strain tensor. The magnitude of the plastic strain Pij =- J'(J~j + fjl)dt 
0 

being the integral of the symmetrical part of the dislocation flux tensor over time, is taken 
at a fixed point of the medium and characterizes the set of Jdislocations passing through 
the microscopic volume being examined during the time t. 

Let an obstacle be located in the path of the dislocation flow. Then the tensor Pij will 
in some way characterize the set of dislocations which have reached the obstacle during the 
same period of time. Let Pij = Pij l + Pij 2, where Pij I is that part of the flux Pij which 

forms the dislocation pileups at the obstacles; Pij 2 is that part embraced by the substructure 
and serving to increase dislocation density in the subboundaries. In the first approximation 
we assume that the subboundaries envelop a fixed part of the dislocation flow. Then Pij i = 
klPij (0 < k I <- i). 

Dislocations not only pile up at obstacles, they also disappear in them and are used 
in the nucleation of defects. Let a set of dislocations accumulated at obstacles be charac- 
terized by the mean tensor mij" This tensor has the same structure as Pij" 

The equation of dislocation balance at the obstacles can be written in the form 

~ j  kl Pij "o = --PiJ. (i.i) 

Here the term Pij ~ characterizes the rate of reduction in the number of dislocations at ob- 
stacles due to their participation in defect formation. The tensor ~ij ~ formally defined 
by Eq. (i,i) gives the flow of dislocations which form defects. This flow should repeat 
the external flow determined by the tensor k1~ij but with a certain lag. The lag is con- 
nected with the accumulation (delaying) of the dislocations at the obstacles: 

"0 
p. = s (1.2) 

where the lag principle [9] should be observed for the functional J. The simplest suggestion 
for construction of relation (1.2) is 

"0 P~j = l (~)ij, P,~) ( i .  3 ) 

(the rate of dislocation loss due to their participation in defect formation is unambiguously 
determined by the instantaneous state of the dislocation pileups and the external flow). 
Equations (i.i) and (1.3) yield the following kinetic equation for mij: 

In the special case when 

(1.4) 

/(o~j, Pu) = k~o~) ( 1 . 5 )  

(it is the dislocations which predominate in the pileups that disappear), the equation for 
mij becomes a linear-tensorial equation. 

We further assume that under certain conditions (normal temperatures, mean strain rates), 
the process of dislocation accumulation at obstacles, as the process of plastic deformation, 
is little sensitive to the time scale. If as this scale we take the length of the plastic- 

strain arcL Sydp~jdpu~ then, in accordance with (1.4), (1.5), and (1.3), 

do~j = k ldp O - -  k~mijdL, dpi~ = k2oijdL, ( 1 . 6  ) 

The r e l a t i o n  be t ween  t h e  s t r e s s e s  and s t r a i n s  ( c a s e  f )  p r e s e n t e d  in  [10]  can  be d e r i v e d  
on t h e  b a s i s  o f  an e q u a t i o n  which  i s  somewhat  more g e n e r a l  t h a n  ( 1 . 6 ) .  The p r o p o s e d  e q u a t i o n  
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connects the tensor of the residual microstresses and the plastic strains. It was used to 
formulate equations of the theory of plasticity and creep in [ii] and in several other studies. 
It must be noted that, in accordance with the criteria in [3, 4], it is the components of 
the residual microstresses that determine the rate of damage accumulation. In [12], the 
relation (1.6) (k I = i) was obtained on the basis of the hypothesis that the material can 
be adapted to the strain path by means of the tensor Pij ~ in such a way that the least amount 
of damage will be incurred. The functional (1.2) was constructed in [13] by using the suppo- 
sition that the components of the tensor Pij ~ are coordinates of the center of gravity of 
the preceding stress-strain curve. In the case of variable density p for points on the strain 

path, we obtain 

L 

J'o (L, z) p~j (z) dZ 
p~ o 

L 

o 

(1.7) 

Equation (1.7) reduces to (i.6) if p(L, s = pz(L)p2(s [for example, for exponential density 
o(L, i) = e-k(L-s Otherwise [for example, for p(L, s = (L- s 0 < m < i] the quanti- 
ties Pij ~ (1.7) cannot be solutions of (1.6). 

It is clear that we should have k 2 _> 0 in (1.6) (the capacity of the dislocation pileups 
does not increase, but instead decreases, due to the participation of dislocations in defect 
formation). Let k= = const. For a nonmonotonic change in the components which is proportion- 
al in the general case, 

, * *  * *  IdPl  
Pij = PPij, Pij = const~ PijPij = I, 7% = I (i. 8) 

0p..,, = ~ij*, where we will have Pij~ = p z3 mi j 

L 

dp (o = k x ~ e -h2(L-D sign ~ d~.. 
0 

For monotonic deformation from the initial state 

k l ( l  "k2L/ 
=--k2 - - e  ]. ( 1 . 9 )  

I n  a c c o r d a n c e  w i t h  ( 1 . 9 ) ,  f o r  s m a l l  L ( k2L  ~ 1 ) ,  ~ = kzL ,  p0 = ( k z k 2 / 2 ) L  2 << m, dm/dL : k z ,  
dp~ : kzk2L , dp~ << d~/dL. Physically, this means that a large number of dislocation 
pileups of the critical size has not yet been formed at the early stages of plastic deforma- 
tion. The disappearance of dislocations takes place slowly, so that nearly all of the dis- 
locations which have reached obstacles remain in pileups. With a further increase in L, 
the rate of increase in m begins to lag behind the rate of increase in p by the amount ~0, 
which increases monotonically. At L + =, the value of m asymptotically approaches kz/k 2 = 

const. Here, conversely, ~ = kle -kaL = 0, ~0 = ki ~ = ki ' which corresponds to the attainment 
of dynamic equilibrium between dislocations which have reached obstacles and dislocations 
disappearing with the formation of defects. Here, the capacity and configuration of the 
dislocation pileups does not change during deformation, while the amount of damage present 
increases. 

If reversal takes place at a certain point on the monotonic strain path with L = Li, 

then m begins to decrease sharply (d~/dL = -ki(2 - e-k2L1)e-k2(L-L1)). This describes the 
movement of dislocations away from obstacles with a change in the direction of deformation. 
If the reverse deformation is continued, then ~ passes through zero. After this, Iml in- 
creases for ~ < 0, which corresponds to the accumulation of dislocations of the opposite 
sign at obstacles (that is, dislocations which have recently been formed in the material 
or have traveled from a given subboundary and reached the opposite subboundary). 

It can be shown [12] that in the case of cyclic deformation with the range A << i/k 2, 
a steady-state regime begins after a certain number of cycles of change in m and ~0 During 
this regime, ~ changes in accordance with the symmetrical cycle of the range of kzA. This 

143 



statement is accurate to within infinitesimals of a higher order than k25. Thus, the alter- 
nating movement of dislocations during cyclic loading is described [14]. This does not mean 
that the dislocations move cyclically within a subgrain during fatigue loading. Some of 
the dislocations which have reached the boundaries of subgrains take part in the formation 
of defects and disappear. Their place is taken by new dislocations which have been formed 
in the bulk of the material. Thus, we again obtain a unique dynamic equilibrium whereby 
during each half-cycle as many dislocations are nucleated as are consumed during the same 
period of time in the formation of defects. 

Equation (1.6) may become more complicated if as k 2 we take not a constant but the func- 

tion L and invariants ~ij and dPij/dL. Thus, if we take k2=k'(%Jd_~!ffdL 1 \ ~i +11, then after re- 

versal dm/dL = -kl, and m decreases linearly with an increase in L until m = 0. On this 
segment, ~0 = 0. Immediately after reversal, dislocations cease forming defects because 
they leave pileups in their reverse motion. The pileups therefore cease being critical. 
The reverse-moving dislocations reach previously formed pileups and are annihilated, which 
decreases ~. Only after ~ passes through zero (i.e., after pileups of the opposite sign are 
formed) does the quantity I~~ begin to increase from zero. Below, for the sake of simplic- 
ity, we will examine only the case k 2 = const. 

2. The accumulation of dislocations at obstacles plays a very important role in damag- 
ing of the material. However, the instantaneous state of dislocation pileups does not deter- 
mine the damage state at a given moment of time [5]. Within the framework of the model being 
used, the process of dislocation accumulation at obstacles is augmented by one other damage 
accumulation process which takes place at the same time - the stage of defect formation. 
It is natural to suggest that the rate of defect formation - which we will designate as ~ - 
depends on the flux ~ij ~ reflecting the loss of dislocations at obstacles due to their parti- 
cipation in defect formation. Experiments [5, 15, 16] show that the rate of increase in 
damage depends on the type of stress state (under creep conditions at atmospheric and high 
pressure [5], in elastoplastic tension and compress [15], and during extrusion and drawing 
[16], the loosening of the material or the density of nucleated defects differs widely for 
the same values of L, while the dislocation structures may be similar). These data show 
that the parameters expressing the type of stress state should go into the equations of the 
second stage rather than the first: 

= F ( b i ~ ,  ~k). ( 2 . 1  ) 

Closing of defects may be occurring simultaneously with their nucleation. Defects may 
be closed either by diffusion or by the mechanism of viscous flow [17]. It is assumed that 
the rate of diffusion closure depends slightly on the configuration of the plastic strain 
path, so that this phenomenon can be simply accounted for by changing the parameters of the 
function F (2.1). The monotonic plastic deformation of a material under certain types of 
stress state - such as under high hydrostatic pressure - may lead to the healing of previous- 
ly formed or existing defects. This fact can be taken into account by means of a dependence 
of F on Bk such that, in certain ranges of Bk, the value of F will be negative regardless of 
the value of ~ij ~ It was found in [15] that defects formed in tension are partially healed 
during subsequent compression. According to [16], defects are created in the drawing or 
extrusion of annealed specimens. At the same time, defects formed in a prior creep test 
are closed by extrusion or drawing. In [18], it was found that microcracks are closed even 
in tension if the direction of a microcrack changed by the angle ~/2. This means that clos- 
ing of defects can be intensified by a sharp change in the direction of deformation (even 
given the same fairly severe stress state). In fact, a defect formed by the combination 
of a certain number of defects of one type may "surface" when it is reached by dislocations 
of the opposite sign. Thus, it is suggested that the rate of defect closure is an increasing 
function of the angle ~ between the direction of the flux Pij and ~ij" In particular, we take 

where 

= F (/,o, x cos 

= I A - z ( ~ ) c o s  r z ( ~ h ) > O .  

In accordance with (2.3), the value of • is maximal at ~ = 0 and minimal at q = ~. 
values of X (closure) are possible only when Z(Bk) > i for angles of change in the strain 

(2.2) 

(2 .3 )  
Negative 
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path >~/2 (with a change in the direction of tension by the angle ~/2 [18], the angle of 
the change in the strain path in the strain space is equal to 2~/3). Thus, a decrease in 
damage after a sharp change in the strain path is possible only until the angle between mij 
and Pi~ becomes less than ~/2 (this circumstance prevails by virtue of satisfaction of th e 
lag principle if the next strain path is close to monotonic). The effect just discussed 
was confirmed by microscopic observations [16]. In accordance with the latter, an increase 
in the degree of extrusion or drawing of specimens with previously initiated defects is ac- 
companied initially by an increase in the density of the material. After passage over a 
certain part of the strain path, the material then begins to loosen. Density increases more 
rapidly in the case of extrusion of defective specimens than in the case of drawing. Thus, 
the value of z in (2.3) may depend on the parameters of the type of stress state. 

3. Let ~ be a scalar [this assumption is valid if we are examining deformation of the 
type (1.8)]. In this case, the function F should depend on the invariants of the tensor 

~ij ~ Taking the intensity of the tensor ~i ~ =f~ij~ ~ as such an invariant, and taking 
L as the time (we assume that under the given conditions the process of dislocation, combi- 
nation, with the formation of defects, does not depend on the time scale), we obtain d~ = 

mijdp~] Alternatively, with kz = const, by virtue of (1.6), we obtain F z ( P i  ~ ~k) dL+z(9~)------~ j ,  

d~ = ~(~i, ~ ) [ ~ d L  ~ z ( ~ ) ~ d p ~ ] .  (3. i) 

At z = 0, (3.1) becomes the equation of the criterion in [3, 4]. This criterion is usually 
written in the form d~/dL = XP, where X = const and P is the intensity of the residual micro- 
stresses [its role is played by the tensor mij in (3.1)]. In the case of the absence of the 

term midL in (3.1), this relation becomes the relation from [19]. 

Equations (1.4) and (3.1) describe the formation of nucleated defects, which controls 
damage accumulation [20]. If the transition from scattered damage formation to the formation 
of a macrocrack takes place at a certain critical density of nucleated defects, then the 
moment of formation of the crack may correspond to attainment of the critical value of the 
measure ~. The latter depends on the stress state [3, 4]: 

= ~*(Bh). ( 3 . 2 )  

To study damage accumulation with a nonproportional change in Pij, it may prove insuffi- 
cient to represent the damage with a scalar. The general form of a fracture criterion which 
uses a tensorial damage parameter was presented in [2]. In [4], the damage state during 
plastic deformation was described by a symmetrical second-rank tensor ~ij obeying the kinetic 

equation d~ij/dL = Fij, where Fij is the microstress function. The same study examined the 

following kinetic equation as the simplest variant 

d~j = A PihPhj A = constj (3.3) 
dL Pi ~ 

which a t  A > 0 e n s u r e s  a monoton ic  a c c u m u l a t i o n  of  damages [4 ] .  By a n a l o g y  w i t h  ( 3 . 3 ) ,  t h e  
f u n c t i o n  F in  ( 2 . 2 )  can be chosen  in  t h e  form F ( ~ i j  ~ ~k) = F l ( P i  ~ Dk)Pik~ ~ R e p l a c i n g  
t h e  t ime  by t h e  l e n g t h  o f  t h e  p l a s t i c - s t r a i n  a r c  and u s i n g  ( 1 . 6 ) ,  f o r  k 2 = c o n s t  we have 

d~ij = ~ (~i, ~k) ~ 2 ~ k ~ j  [~kdL + z (gh) ~mndpmn] ( 3 . 4 )  

[the multiplier ~i -2 was chosen for convenience in comparing the above with (3.1)]. According 
to [21], breakup of the core of a dislocation with the formation of a defect occurs either 
along an excess plane or along the slip plane. Here, ~ij, determined from (3.4), can be rep- 

2 

resented as ~ij = ~ni(h)nj (~), where ni(k) are components of unit normals to the planes of 

the formed cracks. The simplest variant of the limiting condition has the form 

V~Qu~ij = Q*(~). (3.5) 

With deformation (1.8), we find from (3.4) that ~ii = ~Pik*Pki*, where d~ = ~([m[, ~k)([~[dL + 
Z(~k)mdp), [~[ = ~*(~k)(Pik*Pkj*Pim*Pmi*) -~/2. InOaccordanceOwith (3.1), the value of 
satisfies the same equation with limiting condition (3.2). Thus, the scalar and tensor 
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variants will actually give the same results for proportional (in the case of nonmonotonic) 
deformation. These results will be discussed briefly below. 

For low-cycle fatigue with strain-controlled proportional loading [22] in a steady-state 
regime, of change in ~ij, the Coffin-Manson low-cycle fatigue equation A = p,/N ~ is satisfied 

if ~(~i, ~k) = ~(~k)~i n([~k[) + ~(mi, ~k) - ~(~i, -~k)" Here, N is the number of cycles to 
fracture; 5 is the range of plastic strain in a cycle; ~ is an arbitrary function which can- 
not be determined from low-cycle fatigue tests; it is assumed that the values of the param- 
eters ~k for forward and reverse deformation will have different signs. The material func- 
tions ~(~k) and n(I~kl) are connected by the following relations with cyclic toughness p, and 
the exponent of the low-cycle fatigue curve ~, which are easily determined in the experiment 

I 

a=n( l~ l )+2 '  P*=2(2[V(~)+?(--~k)]k~+2 ~ ~ (3.6) 

where the + of - sign in the expression ~*(• is chosen in relation to whether fracture oc- 

forward or reverse deformation; q = 1 for (3.1) and q = (Pik*Pkj*Pig*Pgj*) -I/2 curs during 

for (3.4), (3.5). The quantity Z(~k) does not go into the low-cycle fatigue equation because 
the result of integration of the closing term Z(~k)~d p in a closed cycle is equal to zero 
in the case of a steady-state regime of change in ~ij" 

For a low number of cycles, particularly with asymmetric deformation, there is a reduc- 
tion in endurance compared to that obtained with the Coffin-Manson equation [22]. This em- 
pirical fact is described both qualitatively and quantitatively within the framework of the 
model being examined [12, 13]. The size of the deviation increases with a decrease in the 
parameter k 2 (1.5). Thus, a test involving strain-controlled asymmetric deformation makes 
it possible to determine this parameter of the model. It follows from the equations of the 
model that preliminary monotonic deformation lowers endurance during subsequent low-cycle 
loading with sufficiently large amplitudes of plastic strain. In contrast to the theory 
of damage summation - where the effect of a preliminary monotonic strain path reduces to 
the addition of damage from this path to the total damage - in the present model the rate 
of damage accumulation on the cyclic section is increased by the presence of the section 
of monotonic deformation. The intensity of the effect of one part of the strain path on 
the rate of damage accumulation during deformation along the other parts of the path can 
be varied by changing the parameters of functional (1.2) [with a reduction in k 2 in (1.6), 
the mutual effect is reinforced]. 

The model describes experimental data on residual ductility [3, 13], i.e., on monotonic 
deformation to fracture after preliminary cyclic deformation. The following power relation 
is satisfied for the value of the plastic-strain parameter at the moment of fracture p* < 
l/k= 

[ ~176 
p * = ~  t a*(~)q ': (3 .7 )  

i f  

, . m ( . ~ )  

1 

I ( a* (~h) q ,~,~(.k)+1 
(3.8) 

Here, ~0 is the damage accumulated during the preliminary cyclic deformation. If the number 
of preliminary cycles is large enough so that mij changes in the steady-state regime during 
cyclic deformation, then Eq. (3.7) takes the form 

P*=~[i--k] ~, (3.9) 

where k is the number of preliminary cycles completed; N is the number of cycles of the same 
amplitude necessary for fracture. Equation (3.9) was validated empirically in [23, 24]. If 
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we simultaneously require satisfaction of power relas for both low-cycle fatigue and 
for the residual ductility, then the superscript m should be an even function: m = m(IPkl). 
Meanwhile, according to (3.6) and (3.8), the exponents of the curves describing low-cycle 
fatigue and residual ductility should coincide. This is consistent with the results in [24]. 

The model predicts the following effects in regard to residual ductility during nonmono- 
tonic deformation. Residual ductility after one pulsating cycle is greater when the deforma- 
tion is carried out in the direction of the completed cycle than in the case of the opposite 
direction [13]. Residual ductility after one symmetrical cycle is greater for deformation 
in the direction of the last half-cycle. These effects were confirmed experimentally on 
specimens of brass LS-59 and steel U-8 in [12, 13]. The results of the experiments con- 
ducted in [25, 26] can be explained on the basis of the presence of the term describing de- 
fect closure in the model. According to these results, specimens brought almost to fracture 
in torsion in one direction can be twisted through a fairly large angle in the opposite direc- 
tion without fracture. It was shown in [27] for the case of nonproportional cyclic deforma- 
tion within the framework of the scalar model [3] that the safe life of the material is al- 
ways exhausted more raPidly than with a proportional cyclic change in the components Pij with 
the same strain-path diameter per cycle. This finding was confirmed experimentally in 128] 
for specific strain paths. It can be proven that for tensor model (3.4) in the case when 
defect closure is negligible, the length of the strain path to fracture with a nonpropor- 
tional change in the components will be greater than the length for the corresponding scalar 
model. Thus, the tensor model somewhat reduces the effect of nonproportionality on endurance 
compared to the scalar model. This is illustrated in the example given below. Let there 
be n I cycles of strain-controlled deformation (1.8) with the directrix deviator Pij1*- Then 
let there be n 2 cycles with the directrix deviator Pij2*. It is assumed that the quantities 
n I and n 2 are large enough so that the change in ~ii on both sections of the strain path can 
be assumed to be steady. Using tensor models (3.3)~or (3.4) - which are indistinguishable 
in the present case - we obtain the damage summation law 

( n l )  ,N2] (n--~'2~2 2nl n2 + + (3 . 10 )  

where Nl and N 2 are the number of cycles corresponding to fracture for the first and second 
amplitudes; ~ is the angle between the deviators Pik1*Pkjl* and Pik2*Pkj2*, < = ~i*/~2 * 

(~i* and ~2" are limiting values of the quantity ~-ii~ii for the first and second types of 
stress state). In accordance with scalar model (3.1~, ~or any 

~(nl/N1) -~- n2/N2 : 1. ( 3 . 1 1 )  

E q u a t i o n  ( 3 . 1 1 )  i s  o b t a i n e d  f rom ( 3 . 1 0 )  a t  ~ = 0, i . e . ,  f o r  a p r o p o r t i o n a l  change  in  t h e  
c o m p o n e n t s  P i t "  F i g u r e  1, i n  t h e  c o o r d i n a t e s  x = n2 /N2,  y = ~ n l / N 1 ,  shows t h e  g r a p h  o f  ( 3 . 1 1 )  
( l i n e  1) and [ 3 . 1 0 )  ( l i n e s  2 and 3 w i t h  cos  $ = 1 /2  and 1 / 3 ) .  
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